91 research outputs found

    Lokalno diskriminantna projekcija difuzije i njena primjena za prepoznavanje emocionalnog stanja iz govornog signala

    Get PDF
    The existing Diffusion Maps method brings diffusion to data samples by Markov random walk. In this paper, to provide a general solution form of Diffusion Maps, first, we propose the generalized single-graph-diffusion embedding framework on the basis of graph embedding framework. Second, by designing the embedding graph of the framework, an algorithm, namely Locally Discriminant Diffusion Projection (LDDP), is proposed for speech emotion recognition. This algorithm is the projection form of the improved Diffusion Maps, which includes both discriminant information and local information. The linear or kernelized form of LDDP (i.e., LLDDP or KLDDP) is used to achieve the dimensionality reduction of original speech emotion features. We validate the proposed algorithm on two widely used speech emotion databases, EMO-DB and eNTERFACE\u2705. The experimental results show that the proposed LDDP methods, including LLDDP and KLDDP, outperform some other state-of-the-art dimensionality reduction methods which are based on graph embedding or discriminant analysis.Postojeće metode mapiranja difuzije u uzorke podataka primjenjuju Markovljevu slučajnu šetnju. U ovom radu, kako bismo pružili općenito rješenje za mapiranje difuzije, prvo predlažemo generalizirano okruženje za difuziju jednog grafa, zasnovano na okruženju za primjenu grafova. Drugo, konstruirajući ugrađeni graf, predlažemo algoritam lokalno diskriminantne projekcije difuzije (LDDP) za prepoznavanje emocionalnog stanja iz govornog signala. Ovaj algoritam je projekcija poboljšane difuzijske mape koja uključuje diskriminantnu i lokalnu informaciju. Linearna ili jezgrovita formulacija LDDP-a (i.e., LLDDP ili KLDDP) koristi se u svrhu redukcije dimenzionalnosti originalnog skupa značajki za prepoznavanje emocionalnog stanja iz govornog signala. Predloženi algoritam testiran je nad dvama široko korištenim bazama podataka za prepoznavanje emocionalnog stanja iz govornog signala, EMO-DB i eNTERFACE\u2705. Eksperimentalni rezultati pokazuju kako predložena LDDP metoda, uključujući LLDDP i KLDDP, pokazuje bolje ponašanje od nekih drugih najsuvremenijih metoda redukcije dimenzionalnosti, zasnovanim na ugrađenim grafovima ili analizi diskriminantnosti

    Identifying surgical-mask speech using deep neural networks on low-level aggregation

    Get PDF

    A Vehicular Backbone Network (VBN) with Joint Transportation-Wireless Capacity Utilization

    Get PDF
    Abstract-A vehicular backbone network (VBN) has the potential to augment the Internet with high-throughput data flows for delay-tolerant traffic. High-throughput flows require a joint utilization of transportation capacity for carrying data packets through physical mobility and wireless capacity for switching data packets from one route to another. This paper establishes a model that incorporates both transportation mobility and wireless switching. Then, it characterizes the network capacity based on flow conservation, wireless communication capacity constraints and data storage limits, and solves a convex optimization that results in joint routing and congestion control. A variant with cost minimization reduces delay while maximizing throughput. Next, this paper develops a distributed algorithm that achieves the global objective with limited infrastructure support. Lastly, a packet-level simulation platform using real-world road map and traffic statistics is used to evaluate the distributed algorithm, and demonstrate the significant performance enhancement achieved

    Connecting Subspace Learning and Extreme Learning Machine in Speech Emotion Recognition

    Get PDF
    Speech Emotion Recognition (SER) is a powerful tool for endowing computers with the capacity to process information about the affective states of users in human-machine interactions. Recent research has shown the effectiveness of graph embedding based subspace learning and extreme learning machine applied to SER, but there are still various drawbacks in these two techniques that limit their application. Regarding subspace learning, the change from linearity to nonlinearity is usually achieved through kernelisation, while extreme learning machines only take label information into consideration at the output layer. In order to overcome these drawbacks, this paper leverages extreme learning machine for dimensionality reduction and proposes a novel framework to combine spectral regression based subspace learning and extreme learning machine. The proposed framework contains three stages - data mapping, graph decomposition, and regression. At the data mapping stage, various mapping strategies provide different views of the samples. At the graph decomposition stage, specifically designed embedding graphs provide a possibility to better represent the structure of data, through generating virtual coordinates. Finally, at the regression stage, dimension-reduced mappings are achieved by connecting the virtual coordinates and data mapping. Using this framework, we propose several novel dimensionality reduction algorithms, apply them to SER tasks, and compare their performance to relevant state-of-the-art methods. Our results on several paralinguistic corpora show that our proposed techniques lead to significant improvements
    corecore